HOLLOW SPHERE OF RANDOMLY BONDED MATERIAL
SUBJECTED TO INTERNAL PRESSURE

I. D. Rogozin UDC 539.4.01

A hollow sphere of an elastic binding material of slight stiffness, bonded randomly by
nfiber" segments of a stiffer material, is considered. Polymer material, for example,
can be the binder. Such a bonding permits obtaining a material with improved prop~
erties, where the material on the whole is quasi~isotropic [1]. The stress distribution
in a hollow sphere is obtained.

Let a composite medium consist of an elastic binder and an armature in the form of segments of cir-
cular cylindrical fibers. Let us assume the fiber diameter d to be considerably less than their length
l{d«< 1). Following [2], let us introduce the following as initial hypotheses.

1. Let the fiber segments be distributed uniformly in all directions in the binder material, Let us
identify the macrovolume w(w«V; V is the body volume) with a material point. The number of fiber seg-
ments in the volume w under consideration is sufficiently large. A uniaxial stress state is realized in each
fiber. Let us consider the bonded material as a macroscopically homogeneous medium. Let 0ijs € ij(i,
j=1, 2, 3) denote, respectively, the stress and strain tensor components in a rectangular x,, x,, X5 coor-
dinate system.

2. Let us assume that the binder material is deformed elastically. Let A, i denote the Lamé con~
stants of the binder.

3. The stess—strain dependence in the armature {s nonlinear and is given by the equation oy =
F(enm), where £y, is the axial strain of the fibers and oy, is the axial stress.

Let Q be a hemisphere formed by the unit vectors n, directed along the fiber axis. The relative vol~
ume of the fibers for which the vector n is within the solid angle dQ is proportional to dQ and 27 -fold less
than the volume of all the fibers. Let n;, n,, n, denote the direction cosines of the vector n in the x,, x,, x;
coordinate system and n the coefficient of volume content of the armature in the material. Assuming the
strains homogeneous and taking the hypothesis about the volume contribution of the components to the total
stress state, we obtain the following relationship between the stress and strain:

o35 = (1 —m) (heedi;j -+ 2peesy) - :,n;c gl { 7 (enn) ninsdQ. (1)

Q
Heree =g+, teE g € nm =€ {jBinj (i, =1, 2, 3).
Let us examine the case when the function F is

. Etnn for e < 8np << 843
F(Erm)_{o for &np < €¢ . O St < Enny (2)

i.e., the fibers are deformed according to Hooke's law under tension to a strain et and under compression
to a strain e c. Reaching these limit strains results in brittle fracture of the fibers. Here E is Young's
modulus of the armature.

Let us assume that the armature works elastically, i.e., fiber fracture has not yet occurred. Taking
account of the dependence F(€ yyp,) =E€ nm, we obtain the elastic relation (Hooke's law) between the stress
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x5 and strain tensors from (1). The Lamé coefficients of the composite
e material Ay and py will equal in this case

AM=(1—n) Ae-+1/15qE;
He=(—n)uc+1/159E.

It is more convenient to solve the problem in the r, 6,.¢ spheri-
cal coordinate system. Because of symmetry, it is sufficient to con-
sider the problem for one fixed ray directed along the sphere radius,
along the x; axis, say. Let us direct the unit vectors r?, 80 ¢l0of the
spherical coordinate system parallel tothe 0x;, 0x;, 0x, axes respec-
tively. Let us rewrite (1) in this coordinate system by introducing the
angles & andy (Fig. 1), which give the direction of the vector n. Let us
hence omit the subscripts on the A, and pe:

Fig. 1 /2

0, = (1 —mn)(he - 2ue,) + 1 f F () sin® 1 cos py; @
0

Go = (1 — ) (he + 2peq) + 1L [ [ F (e sin? ot cos? yagy
Q
o, = (1 — ) (he + 2pee) + 23-2 ﬁ‘ 5. F (en,) c0s? a cos? yd€Q,
ERN
Because of the symmetry of the problem, &g =¢,, 0y =0, and the components with different subscripts are
. s ; . 4 @
zero [3]. The axial strain of the fibers is
€nn=8, sin® P-+eg cos® P sin? ey cos? P cos® .
Since gg =€y then it is possible to write
€m=028, sin? Pp+eg cos? . (4)

Therefore, €y, Is independent of the angle o, The dependence on o also vanishes for the sum og + o @

/2
Go + Op = 2(1 — ) [Ae + p(eo+ €] -+ 1 | (8nn) cosd pilip. )
0 .

Taking account of (2), let us rewrite (3), (5) as follows:

8
0, = {1 —m)(Ae + 2pe,) + 1 S Een, sin® 1 cos gdy; (6)

3

13
gg+0o=2(1—mhe+p(es +eg)l+ 1 jl Eg,n cos® Pdip.
v

The angles ¥ and 6 are determined from the relationships
&, = &, sin® y+¢g cos? Y=¢;
g5 == €, sin? 8t¢ep cos® §==¢..
We hence obtain _
sin® y=(g, — &o)/(e, — ep);
sin? §=(eg — &;)/(gg — &,).

Therefore
0 for g, < gy
Y= | arcsin [(e, — o)/(e; — egy L2 for  gy=¢

g | W2 for &5 > e
= | arcsin [(eo — 8c)/(2g — ;)12 for gs=e..

£

Integrating (6) with respect to ¥ and taking account of (4), we obtain

o, =(w-tg)e,+(v-+c)es; (7
oo+ Gp={v+c)e,+(2w+v-+)eq,
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where
v=2(1 — & w={E—m)A+2p);

g=1/5mE(sin? 6 — sin? y);
c=1/5qE [sin® 8(cos? 6-+2/3) — sin? y(cos? y+2/3)1;
t=1/5E[25/8(sin 6 — sin p)+25/48(sin 38 — sin 3y) +1/16(sin 58 — sin 5y) 1.
Let us express the strain in terms of the displacement u [3]:

du
& =7; So=ge=u/T

and let us substitute into (7): ,
d
0',-=(w+g)g‘:+(v+c)ri; (8)
Ue—]~0¢=(v—|—c)§—l:+ (2w +v + i)%-
Since A and p are positive and 6 is greater than v, then w+g> 0. The equilibrium equation in a spherical
coordinate system is [3]

do
r—2 +2(0,—0e) = 0.

(9
However, it is more convenient to convert it into
do’ 20 — (0 4 oy) .
it S R Y (10)

Since 0y =0 ,, then (9) always follows from (10), but the angle & does not enter into (10). Let us substitute
(9) into (10). After simple manipulations, we obtain

d2u Zdu_{Z_ 1 dg du _1__@ 28+ c—1 o
F+Td_r rz u+w—{—g[drdr+(_r dr+ r2 >u]—0 (11)
Let us take the boundary conditions in the form
r=a: u(a)=U; (12)
r=b: o,(b)=0.

Let us solve the problem (11), (12) numerically by introducing the iteration in u since (11) is nonlinear. Let
us approximate (11) by a difference scheme to second-order accuracy [4]:

i+1 i+1) i1 i+1 i+1
) —2uftD D g WD WMD) 0 (13)
5 -~ - —Zup O+ fi =0,
h Tk 2h ri;
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where
79— 1 [é’gﬁri gy ) ) —uld 4 1 ey — el + 28 - D 40 0
Rl R 7 TR =

The subscript denotes the number of the point on the sphere radius (k=1, 2, ..., n—1), while the superscript
in the parentheses denotes the number of the iteration step at which the value of the function is taken.

Let us rewrite (13) as follows:

At — CalfitY + Bl = — FY.
Here
M=1—t Bi=14 2, ch:2<1+ 12) FO 120, (14)
3 Ty ri |
Equating o, in (8) to zero according to (12), we obtain
du 0 vte u(d) __ 0
dr| Twdg b

Let us approximate the boundary conditions by a difference scheme with second-order accuracy:
uy="U,; )
e

o 4t =, (15)

where
v+ cld

%: — T e
b{w+e?)

Let us seek the solution by the method of left factorization [4]. Using the second equation from (15), we find
the factorizing coefficients 5(1'”) and 9 (i+1),

G+ _ 44, 41— Cp 4 )
n T B A, —B,
! i 1 s

W = [4 — (34 2hw) EGF )] F;z)_1
" G+2m)C,_,—4B,_,

Here Ay_j, By.1, Cp-y,and ngi are expressed by means of (14).

We determine u, from the first equation in (12). We t(hen)fmd the remaining displacements u(1+1)
- i+1
(k=1, 2, ..., n). We determine srk sek, S€0k in terms of uy
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— Bup - 4D — D

Bro = 2k :
e - w40 3u£§+1).
n 2k '
GG+ (i+1)
Yhet TRy A
& = k=1,...,n—1)
)
k
g, = &y, = " (k=0,1,...,n).

Finally, we determine ork, G‘pk’ and gy from (7). Since (11) is nonlinear, let us introduce an itera-

tion in u: Let us determine FI((PH) in terms of the ugﬁ) found and let us repeat the factorization without
changing u,. The counting process starts with the elastic solution. The problem was solved on the M-222
computer.

Presented in Figs. 2-4 are the results of computing a bonded sphere under the following initial data:
E=7000 kg/mm? A=300 kg/mm?; po =75 kg/mm? e =0.005; € . =0.01; n =0.1.

Shown in Fig. 2 is the change in pressure p=—¢ y , stress T andalso the magnitudes of the angles
; o 0
Y 0 o0n the inner surface of the sphere as a function of its displacement u,.

Shown in Fig. 3 is the change in the angles y and 6 as a function of the radius r and pressure p (curves
1, 2, 3 correspond to p=22.2; 36.7; 55.3 kg/mm?, respectively).

Presented in Fig. 4 are graphs showing the stress distribution in the wall of a spherical vessel as a
function of the radius r and pressure p (curves 1, 2, 3. correspond to u,=0.005; 0.008; 0.18A, respectively).

Shown in Figs. 5 and 6 is the change in the pressure p =0y the stress Ty o the magnitude of the

angles v, 6, (Fig. 5) for the following characteristics of the composite material: E=7000kg/mm? A =300
kg/mmz; pe=75 kg/mm2; £4=0.005; £ c=—0.01; n =0.2 (curves 1, 2, 3 correspond to uy=0.004; 0.008;
0.0154),
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